1. 目的
2. 1つの図に3群の結果をプロット
2.1. データ準備
2.2. ソースコード
2.3. 結果確認
2.3.1. Boxplot
2.3.2. Boxplot_with_dot
2.3.3. Violinplot
3. 1つの図に3群の結果を各領域ごとにプロット
3.1. データ準備
3.2. ソースコード
3.3. 結果
4. 1つの図に3つの変数に対して4群の結果を3パターンプロット
4.1. データ準備
4.2. ソースコード
4.3. 結果
1. 目的
- Pythonを使って箱ひげ図(BoxPlot)を作成
2. 1つの図に3群の結果をプロット
2.1. データ準備
行に各被験者、列にIDと各被験者のlabel、さらに各定量値が来るようにデータをまとめる。以下のデータは、その一部である。
この例では、以下のデータを「dataset.csv」として保存。
ID | label | AD | ADfwe | MD | MDfwe | RD | RDfwe | AK | MK | RK | ICVF | ISO | AVF | FA | fafwe | freewater | MVF | gratio | OD | T1 | T2 | R1 | R2 | PD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sub001 | 0 | 1.139126 | 1.084 | 0.767302 | 0.602 | 0.566298 | 0.362 | 0.415519 | 0.570861 | 0.791092 | 0.590076 | 0.082388 | 0.377932 | 0.438481 | 0.614848 | 0.156918 | 0.288708 | 0.754112 | 0.191405 | 810.747168 | 79.703771 | 1.280526 | 12.822576 | 66.656261 |
Sub002 | 0 | 1.133603 | 1.082 | 0.77083 | 0.605 | 0.57187 | 0.366 | 0.416198 | 0.570608 | 0.787359 | 0.586764 | 0.081708 | 0.383601 | 0.433305 | 0.608671 | 0.157489 | 0.274517 | 0.767147 | 0.194536 | 857.855883 | 83.185407 | 1.244505 | 12.618935 | 67.648979 |
Sub003 | 0 | 1.156806 | 1.015 | 0.771779 | 0.611 | 0.579677 | 0.409 | 0.419005 | 0.575068 | 0.785805 | 0.609524 | 0.086635 | 0.374028 | 0.423782 | 0.531318 | 0.17062 | 0.31571 | 0.737025 | 0.198631 | 770.392887 | 75.561827 | 1.336872 | 13.477936 | 64.960388 |
2.2. ソースコード
- 各定量値について、各被験者ごとにプロット
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os def set_plot_config_save(ax, dataname, plottype): # config # ax.set_title(dataname) plt.gca().spines[ 'right' ].set_visible( False ) plt.gca().spines[ 'top' ].set_visible( False ) ax. set (xlabel = '', ylabel = dataname) # save figure if not os.path.isdir( 'result_figure/' + plottype): os.makedirs( 'result_figure/' + plottype) plt.savefig( 'result_figure/' + plottype + '/HCvsMSvsNMO_' + dataname + '.png' ) plt.close() def plot_result(all_df, dataname): # change label int to str all_df = all_df.replace({ 'label' : { 0 : 'HC' , 1 : 'MS' , 2 : 'NMO' }}) # plot 1 (boxplot) fig = plt.figure() ax = fig.add_subplot( 1 , 1 , 1 ) sns.boxplot(x = 'label' , y = dataname, data = all_df, showfliers = False , palette = "Set1" ) set_plot_config_save(ax, dataname, 'boxplot' ) # plot 2 (boxplot with dot) fig = plt.figure() ax = fig.add_subplot( 1 , 1 , 1 ) sns.boxplot(x = 'label' , y = dataname, data = all_df, showfliers = False , palette = "Set1" ) sns.stripplot(x = 'label' , y = dataname, data = all_df, size = 4 , dodge = True , jitter = True , color = 'black' ) set_plot_config_save(ax, dataname, 'boxplot_dot' ) # plot 3 (violinplot) fig = plt.figure() ax = fig.add_subplot( 1 , 1 , 1 ) sns.violinplot(x = 'label' , y = dataname, data = all_df, showfliers = False , palette = "Set1" , split = True ) set_plot_config_save(ax, dataname, 'violinplot' ) # import file all_df = pd.read_csv( 'dataset.csv' ) # plot results datanames = [ 'AD' , 'ADfwe' , 'MD' , 'MDfwe' , 'RD' , 'RDfwe' , 'AK' , 'MK' , 'RK' , 'ICVF' , 'ISO' , 'AVF' , 'FA' , 'fafwe' , 'freewater' , 'MVF' , 'gratio' , 'OD' , 'T1' , 'T2' , 'R1' , 'R2' , 'PD' ] for map in datanames: print ( "Plotting {}..." . format ( map )) plot_result(all_df, map ) |
2.3. 結果確認
1 2 3 | for plottype in 'boxplot' 'boxplot_dot' 'violinplot' ; do montage result_figure/${plottype}/*png -geometry 640x480 -tile 5x5 result_figure/${plottype}/${plottype}_tile.jpg done |
2.3.1. Boxplot
2.3.2. Boxplot_with_dot
2.3.3. Violinplot
3. 1つの図に3群の結果を各領域ごとにプロット
3.1. データ準備
行に各被験者、列にIDと各被験者のlabel、さらに各領域の各定量値が来るようにデータをまとめる。以下のデータは、その一部であり、1つの定量値に対して3領域分の計測値がある。
ID | label | ICVF_vSN | ICVF_lSN | ICVF_mSN | ISOVF_vSN | ISOVF_lSN | ISOVF_mSN | ODI_vSN | ODI_lSN | ODI_mSN | FW_1000_vSN | FW_1000_lSN | FW_1000_mSN | FW_10002000_vSN | FW_10002000_lSN | FW_10002000_mSN |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sub001 | 0 | 0.74727 | 0.740142 | 0.719879 | 0.172856 | 0.20309 | 0.18001 | 0.248277 | 0.087609 | 0.329636 | 0.312351 | 0.273095 | 0.300793 | 0.27786 | 0.205887 | 0.274283 |
Sub002 | 0 | 0.725333 | 0.751942 | 0.769737 | 0.157023 | 0.222715 | 0.201932 | 0.30647 | 0.172115 | 0.304513 | 0.330445 | 0.237088 | 0.293767 | 0.239366 | 0.281042 | 0.253842 |
Sub003 | 0 | 0.794968 | 0.695998 | 0.761458 | 0.220207 | 0.235809 | 0.213143 | 0.28446 | 0.145531 | 0.294445 | 0.285126 | 0.180409 | 0.27599 | 0.274388 | 0.263941 | 0.259132 |
3.2. ソースコード
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os def set_plot_config_save(ax, dataname, plottype): # config # ax.set_title(dataname) plt.gca().spines[ 'right' ].set_visible( False ) plt.gca().spines[ 'top' ].set_visible( False ) ax. set (xlabel = '', ylabel = dataname) # save figure if not os.path.isdir( 'result_figure/' + plottype): os.makedirs( 'result_figure/' + plottype) plt.savefig( 'result_figure/' + plottype + '/HCvsMSvsNMO_' + dataname + '.png' ) plt.close() def plot_result(all_df, dataname): # change label int to str all_df = all_df.replace({ 'label' : { 0 : 'HC' , 1 : 'MS' , 2 : 'NMO' }}) # plot 1 (boxplot) fig = plt.figure() ax = fig.add_subplot( 1 , 1 , 1 ) sns.boxplot(x = 'label' , y = dataname, data = all_df, showfliers = False , palette = "Set1" ) set_plot_config_save(ax, dataname, 'boxplot' ) # plot 2 (boxplot with dot) fig = plt.figure() ax = fig.add_subplot( 1 , 1 , 1 ) sns.boxplot(x = 'label' , y = dataname, data = all_df, showfliers = False , palette = "Set1" ) sns.stripplot(x = 'label' , y = dataname, data = all_df, size = 4 , dodge = True , jitter = True , color = 'black' ) set_plot_config_save(ax, dataname, 'boxplot_dot' ) # plot 3 (violinplot) fig = plt.figure() ax = fig.add_subplot( 1 , 1 , 1 ) sns.violinplot(x = 'label' , y = dataname, data = all_df, showfliers = False , palette = "Set1" , split = True ) set_plot_config_save(ax, dataname, 'violinplot' ) # import file all_df = pd.read_csv( 'dataset.csv' ) # plot results datanames = [ 'AD' , 'ADfwe' , 'MD' , 'MDfwe' , 'RD' , 'RDfwe' , 'AK' , 'MK' , 'RK' , 'ICVF' , 'ISO' , 'AVF' , 'FA' , 'fafwe' , 'freewater' , 'MVF' , 'gratio' , 'OD' , 'T1' , 'T2' , 'R1' , 'R2' , 'PD' ] for map in datanames: print ( "Plotting {}..." . format ( map )) plot_result(all_df, map ) |
3.3. 結果
4. 1つの図に3つの変数に対して4群の結果を3パターンプロット
4.1. データ準備
行に各被験者、列にIDと各被験者のlabel、さらに各定量値が来るようにデータをまとめる。以下のデータは、その一部である。
この例では、以下のデータを「dataset.csv」として保存。
ID | SD05_lSN | SD05_mSN | SD05_vSN | SD10_lSN | SD10_mSN | SD10_vSN | SD15_lSN | SD15_mSN | SD15_vSN | label |
---|---|---|---|---|---|---|---|---|---|---|
Sub001 | 260 | 553 | 253 | 136 | 448 | 154 | 74 | 269 | 43 | 1 |
Sub002 | 224 | 666 | 145 | 148 | 566 | 109 | 53 | 315 | 55 | 2 |
Sub003 | 344 | 422 | 324 | 218 | 303 | 273 | 53 | 130 | 186 | 3 |
Sub004 | 121 | 536 | 357 | 0 | 108 | 52 | 0 | 0 | 0 | 4 |
4.2. ソースコード
各定量値について、各被験者ごとにプロット
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns def plot_result(all_df, dataname): # define subjects HC_df = all_df[all_df[ 'label' ] = = 1 ] wICD_df = all_df[all_df[ 'label' ] = = 2 ] wPDD_df = all_df[all_df[ 'label' ] = = 3 ] woICDPDD_df = all_df[all_df[ 'label' ] = = 4 ] # each dataframe HC_df_tg = pd.DataFrame({ 'lSNc' : HC_df[dataname + '_lSN' ], 'vSNc' : HC_df[dataname + '_vSN' ], 'mSNc' : HC_df[dataname + '_mSN' ] }) wICD_df_tg = pd.DataFrame({ 'lSNc' : wICD_df[dataname + '_lSN' ], 'vSNc' : wICD_df[dataname + '_vSN' ], 'mSNc' : wICD_df[dataname + '_mSN' ] }) wPDD_df_tg = pd.DataFrame({ 'lSNc' : wPDD_df[dataname + '_lSN' ], 'vSNc' : wPDD_df[dataname + '_vSN' ], 'mSNc' : wPDD_df[dataname + '_mSN' ] }) woICDPDD_df_tg = pd.DataFrame({ 'lSNc' : woICDPDD_df[dataname + '_lSN' ], 'vSNc' : woICDPDD_df[dataname + '_vSN' ], 'mSNc' : woICDPDD_df[dataname + '_mSN' ] }) # melt HC_df_tg_melt = pd.melt(HC_df_tg) wICD_df_tg_melt = pd.melt(wICD_df_tg) wPDD_df_tg_melt = pd.melt(wPDD_df_tg) woICDPDD_df_tg_melt = pd.melt(woICDPDD_df_tg) # add label HC_df_tg_melt[ 'map' ] = 'HC' wICD_df_tg_melt[ 'map' ] = 'wICD' wPDD_df_tg_melt[ 'map' ] = 'wPDD' woICDPDD_df_tg_melt[ 'map' ] = 'woICD-PDD' cat_df = pd.concat( [HC_df_tg_melt, wICD_df_tg_melt, wPDD_df_tg_melt, woICDPDD_df_tg_melt], axis = 0 ) fig = plt.figure() ax = fig.add_subplot( 1 , 1 , 1 ) # plot 1 (errorbar ?) # sns.barplot(x='variable', y='value', data=cat_df, # hue='map', ci='sd', capsize=0.1, errwidth=1.5) # plot 2 (stripplot ?) # sns.barplot(x='variable', y='value', data=cat_df, hue='map', ci=None) # sns.stripplot(x='variable', y='value', data=cat_df, size=5, hue='map', dodge=True, jitter=True, linewidth=1, edgecolor='black') # plot 3 (boxplot) sns.boxplot(x = 'variable' , y = 'value' , data = cat_df, showfliers = False , hue = 'map' , palette = "Set1" ) # sns.stripplot(x='variable', y='value', data=cat_df, size=2, hue='map', dodge=True, jitter=True, color='black') # plot 4 (violinplt) # sns.violinplot(x='variable', y='value', data=cat_df, showfliers=False, hue='map', palette="Set1", split=True) # ylim=(0, 1) # ax.set(xlabel='', ylabel='', ylim=(0, 1)) plt.gca().spines[ 'right' ].set_visible( False ) plt.gca().spines[ 'top' ].set_visible( False ) ax. set (xlabel = '', ylabel = dataname) handles, labels = ax.get_legend_handles_labels() ax.legend(handles[ 0 : 4 ], labels[ 0 : 4 ]) # ax.get_legend().remove() # ax.set_title(dataname) plt.savefig( 'ICD_' + dataname + '.png' ) # plt.show() # import file all_df = pd.read_csv( 'dataset.csv' ) # plot results datanames = [ 'SD05' , 'SD10' , 'SD15' ] for map in datanames: plot_result(all_df, map ) |
4.3. 結果