1. 目的
2. コマンド
3. 使用例
3.1. ボクセルサイズを指定(オプション:-voxel)
3.2. スケールを指定(オプション:-scale))
3.3. ボクセルサイズを指定(オプション:-voxel))
3.4. 目的の解像度を持つ画像を指定(オプション:-template))
1. 目的
- MRtrixを用いたアップサンプリング(Upsampling)
2. コマンド
MRtrixのmrgrid
を用いる。
mrgrid
のヘルプは、次の通り。
クリックして展開
SYNOPSIS
Modify the grid of an image without interpolation (cropping or padding) or
by regridding to an image grid with modified orientation, location and or
resolution. The image content remains in place in real world coordinates.
USAGE
mrgrid [ options ] input operation output
input input image to be regridded.
operation the operation to be performed, one of: regrid, crop, pad.
output the output image.
DESCRIPTION
- regrid: This operation performs changes of the voxel grid that require
interpolation of the image such as changing the resolution or location and
orientation of the voxel grid. If the image is down-sampled, the
appropriate smoothing is automatically applied using Gaussian smoothing
unless nearest neighbour interpolation is selected or oversample is
changed explicitly. The resolution can only be changed for spatial
dimensions.
- crop: The image extent after cropping, can be specified either manually
for each axis dimensions, or via a mask or reference image. The image can
be cropped to the extent of a mask. This is useful for axially-acquired
brain images, where the image size can be reduced by a factor of 2 by
removing the empty space on either side of the brain. Note that cropping
does not extend the image beyond the original FOV unless explicitly
specified (via -crop_unbound or negative -axis extent).
- pad: Analogously to cropping, padding increases the FOV of an image
without image interpolation. Pad and crop can be performed simultaneously
by specifying signed specifier argument values to the -axis option.
This command encapsulates and extends the functionality of the superseded
commands 'mrpad', 'mrcrop' and 'mrresize'. Note the difference in -axis
convention used for 'mrcrop' and 'mrpad' (see -axis option description).
EXAMPLE USAGES
Crop and pad the first axis:
$ mrgrid in.mif crop -axis 0 10,-5 out.mif
This removes 10 voxels on the lower and pads with 5 on the upper bound,
which is equivalent to padding with the negated specifier (mrgrid in.mif
pad -axis 0 -10,5 out.mif).
Right-pad the image to the number of voxels of a reference image:
$ mrgrid in.mif pad -as ref.mif -all_axes -axis 3 0,0 out.mif -fill nan
This pads the image on the upper bound of all axes except for the volume
dimension. The headers of in.mif and ref.mif are ignored and the output
image uses NAN values to fill in voxels outside the original range of
in.mif.
Regrid and interpolate to match the voxel grid of a reference image:
$ mrgrid in.mif regrid -template ref.mif -scale 1,1,0.5 out.mif -fill nan
The -template instructs to regrid in.mif to match the voxel grid of
ref.mif (voxel size, grid orientation and voxel centres). The -scale
option overwrites the voxel scaling factor yielding voxel sizes in the
third dimension that are twice as coarse as those of the template image.
Regridding options (involves image interpolation, applied to spatial axes only)
-template image
match the input image grid (voxel spacing, image size, header
transformation) to that of a reference image. The image resolution
relative to the template image can be changed with one of -size, -voxel,
-scale.
-size dims
define the size (number of voxels) in each spatial dimension for the
output image. This should be specified as a comma-separated list.
-voxel size
define the new voxel size for the output image. This can be specified
either as a single value to be used for all spatial dimensions, or as a
comma-separated list of the size for each voxel dimension.
-scale factor
scale the image resolution by the supplied factor. This can be specified
either as a single value to be used for all dimensions, or as a
comma-separated list of scale factors for each dimension.
-interp method
set the interpolation method to use when reslicing (choices: nearest,
linear, cubic, sinc. Default: cubic).
-oversample factor
set the amount of over-sampling (in the target space) to perform when
regridding. This is particularly relevant when downsamping a
high-resolution image to a low-resolution image, to avoid aliasing
artefacts. This can consist of a single integer, or a comma-separated list
of 3 integers if different oversampling factors are desired along the
different axes. Default is determined from ratio of voxel dimensions
(disabled for nearest-neighbour interpolation).
Pad and crop options (no image interpolation is performed, header transformation is adjusted)
-as reference image
pad or crop the input image on the upper bound to match the specified
reference image grid. This operation ignores differences in image
transformation between input and reference image.
-uniform number
pad or crop the input image by a uniform number of voxels on all sides
-mask image
crop the input image according to the spatial extent of a mask image. The
mask must share a common voxel grid with the input image but differences
in image transformations are ignored. Note that even though only 3
dimensions are cropped when using a mask, the bounds are computed by
checking the extent for all dimensions. Note that by default a gap of 1
voxel is left at all edges of the image to allow valid trilinear
interpolation. This gap can be modified with the -uniform option but by
default it does not extend beyond the FOV unless -crop_unbound is used.
-crop_unbound
Allow padding beyond the original FOV when cropping.
-axis index spec (multiple uses permitted)
pad or crop the input image along the provided axis (defined by index).
The specifier argument defines the number of voxels added or removed on
the lower or upper end of the axis (-axis index delta_lower,delta_upper)
or acts as a voxel selection range (-axis index start:stop). In both
modes, values are relative to the input image (overriding all other
extent-specifying options). Negative delta specifier values trigger the
inverse operation (pad instead of crop and vice versa) and negative range
specifier trigger padding. Note that the deprecated commands 'mrcrop' and
'mrpad' used range-based and delta-based -axis indices, respectively.
-all_axes
Crop or pad all, not just spatial axes.
General options
-fill number
Use number as the out of bounds value. nan, inf and -inf are valid
arguments. (Default: 0.0)
Stride options
-strides spec
specify the strides of the output data in memory; either as a
comma-separated list of (signed) integers, or as a template image from
which the strides shall be extracted and used. The actual strides produced
will depend on whether the output image format can support it.
Data type options
-datatype spec
specify output image data type. Valid choices are: float32, float32le,
float32be, float64, float64le, float64be, int64, uint64, int64le,
uint64le, int64be, uint64be, int32, uint32, int32le, uint32le, int32be,
uint32be, int16, uint16, int16le, uint16le, int16be, uint16be, cfloat32,
cfloat32le, cfloat32be, cfloat64, cfloat64le, cfloat64be, int8, uint8,
bit.
Standard options
-info
display information messages.
-quiet
do not display information messages or progress status; alternatively,
this can be achieved by setting the MRTRIX_QUIET environment variable to a
non-empty string.
-debug
display debugging messages.
-force
force overwrite of output files (caution: using the same file as input and
output might cause unexpected behaviour).
-nthreads number
use this number of threads in multi-threaded applications (set to 0 to
disable multi-threading).
-config key value (multiple uses permitted)
temporarily set the value of an MRtrix config file entry.
-help
display this information page and exit.
-version
display version information and exit.
解像度の変更する場合の基本的な使い方は、以下の通り。
mrgrid <入力画像> regrid -voxel <値> <出力画像> # ボクセルサイズを指定
mrgrid <入力画像> regrid -scale <値> <出力画像> # スケールを指定
mrgrid <入力画像> regrid -template <目的の解像度を持つ画像> <出力画像> # 目的の解像度を持つ画像を指定
3. 使用例
3D-T1WI(T1w.nii.gz)の解像度を変更する。
3D-T1WI(T1w.nii.gz)の解像度を確認してみる。
mrinfo T1w.nii.gz
************************************************
Image name: "T1w.nii.gz"
************************************************
Dimensions: 192 x 256 x 256
Voxel size: 0.9 x 0.9375 x 0.9375
Data strides: [ -1 2 3 ]
Format: NIfTI-1.1 (GZip compressed)
Data type: signed 16 bit integer (little endian)
Intensity scaling: offset = 0, multiplier = 1
Transform: 0.9998 0.01794 0.0003439 -82.89
-0.01788 0.9946 0.1023 -113.6
0.001492 -0.1023 0.9948 -114.6
comments: 6.0.3:b862cdd5
3.1. ボクセルサイズを指定(オプション:-voxel
)
-voxel
オプションを用いて、以下のコマンドを実行。
ボクセルサイズを1mm isotropicにする。
mrgrid T1w.nii.gz regrid -voxel 1 T1w_1mm_iso.nii.gz
解像度を確認してみる。ボクセルサイズが1 x 1 x 1(1mm iso)になっている
mrinfo T1w_1mm_iso.nii.gz
************************************************
Image name: "T1w_1mm_iso.nii.gz"
************************************************
Dimensions: 173 x 240 x 240
Voxel size: 1 x 1 x 1
Data strides: [ -1 2 3 ]
Format: NIfTI-1.1 (GZip compressed)
Data type: 32 bit float (little endian)
Intensity scaling: offset = 0, multiplier = 1
Transform: 0.9998 0.01794 0.0003439 -82.94
-0.01788 0.9946 0.1023 -113.6
0.001492 -0.1023 0.9948 -114.5
comments: 6.0.3:b862cdd5
mrtrix_version: 3.0.0-40-g3e1ed225
3.2. スケールを指定(オプション:-scale
)
-scale
オプションを用いて、以下のコマンドを実行。
スケールを2にして、解像度を2倍にする。
mrgrid T1w.nii.gz regrid -scale 2 T1w_scale2.nii.gz
解像度を確認してみる。解像度が173 x 240 x 240からになっている。
mrinfo T1w_scale2.nii.gz
************************************************
Image name: "T1w_scale2.nii.gz"
************************************************
Dimensions: 384 x 512 x 512
Voxel size: 0.45 x 0.46875 x 0.46875
Data strides: [ -1 2 3 ]
Format: NIfTI-1.1 (GZip compressed)
Data type: 32 bit float (little endian)
Intensity scaling: offset = 0, multiplier = 1
Transform: 0.9998 0.01794 0.0003439 -83.12
-0.01788 0.9946 0.1023 -113.9
0.001492 -0.1023 0.9948 -114.8
comments: 6.0.3:b862cdd5
mrtrix_version: 3.0.0-40-g3e1ed225
3.3. ボクセルサイズを指定(オプション:-voxel
)
-voxel
オプションを用いて、以下のコマンドを実行。
ボクセルサイズを1mm isotropicにする。
mrgrid T1w.nii.gz regrid -voxel 1 T1w_1mm_iso.nii.gz
解像度を確認してみる。ボクセルサイズが1 x 1 x 1(1mm iso)になっている。
mrinfo T1w_1mm_iso.nii.gz
************************************************
Image name: "T1w_1mm_iso.nii.gz"
************************************************
Dimensions: 173 x 240 x 240
Voxel size: 1 x 1 x 1
Data strides: [ -1 2 3 ]
Format: NIfTI-1.1 (GZip compressed)
Data type: 32 bit float (little endian)
Intensity scaling: offset = 0, multiplier = 1
Transform: 0.9998 0.01794 0.0003439 -82.94
-0.01788 0.9946 0.1023 -113.6
0.001492 -0.1023 0.9948 -114.5
comments: 6.0.3:b862cdd5
mrtrix_version: 3.0.0-40-g3e1ed225
3.4. 目的の解像度を持つ画像を指定(オプション:-template
)
標準脳(MNI152)の3D-T1WI(MNI152_T1_2mm.nii.gz)と同じ解像度にする。標準脳(MNI152_T1_2mm.nii.gz)の解像度は以下。
mrinfo MNI152_T1_2mm.nii.gz
************************************************
Image name: "MNI152_T1_2mm.nii.gz"
************************************************
Dimensions: 91 x 109 x 91
Voxel size: 2 x 2 x 2
Data strides: [ -1 2 3 ]
Format: NIfTI-1.1 (GZip compressed)
Data type: signed 16 bit integer (little endian)
Intensity scaling: offset = 0, multiplier = 1
Transform: 1 0 0 -90
-0 1 0 -126
-0 0 1 -72
comments: FSL5.0
個人脳(T1w.nii.gz)を標準脳(MNI152_T1_2mm.nii.gz)の解像度に合わせるには、-template
オプションを用いて、以下のコマンドを実行。
mrgrid T1w.nii.gz regrid -template MNI152_T1_2mm.nii.gz T1w_MNIreso.nii.gz
解像度を確認してみる。解像度が標準脳(MNI152_T1_2mm.nii.gz)と同じになっている。
mrinfo T1w_MNIreso.nii.gz
************************************************
Image name: "T1w_MNIreso.nii.gz"
************************************************
Dimensions: 91 x 109 x 91
Voxel size: 2 x 2 x 2
Data strides: [ -1 2 3 ]
Format: NIfTI-1.1 (GZip compressed)
Data type: 32 bit float (little endian)
Intensity scaling: offset = 0, multiplier = 1
Transform: 1 0 0 -90
-0 1 0 -126
-0 0 1 -72
comments: 6.0.3:b862cdd5
mrtrix_version: 3.0.0-40-g3e1ed225